resembling the ruffling of the skeleton as a mechanism for effecting inversion of five-coordinate porphyrins with sizable out-of-plane displacements, as characterized in static structures.

The rate constants in Table I and the kinetic parameters in Table II represent inversion as induced by associative halide exchange occurring exclusively via an SN 2 mechanism. Any halide exchange occurring on the same side of the porphyrin goes undetected in the NMR method ${ }^{15}$ employed here. Thus the present system represents one of the most thoroughly characterized cases of axial ligand lability in metalloporphyrins. ${ }^{19}$

Acknowledgment. The authors are indebted to Professor F. Basolo for a stimulating discussion, to Professor Innhofen for a gift of OEP, and to the National Institute of Health (HL16087) for support of this research.

References and Notes

(1) Fellow of the Alfred P. Sloan Foundation.
(2) (a) J. L. Hoard, Science, 174, 1295 (1971). (b) J. L. Hoard, M. J. Hamor, T. A. Hamor, and W. S. Caughey, J. Am. Chem. Soc., 87, 2312 (1965); D. F Koenig, Acta Crystallogr., 18, 663 (1965).
(3) J. L. Hoard, C. H. Cohen, and M. D. Glick, J. Am. Chem. Soc., 89, 1992 (1967).
(4) D. M. Collins, R. Countryman, and J. L. Hoard, J. Am. Chem. Soc., 94, 2066 (1972).
(5) L. J. Rabinovich, A. Bloom, and J. L. Hoard, J. Am. Chem. Soc., 94, 2073 (1972).
(6) M. F. Perutz, Nature (London), 228, 726 (1970).
(7) J. C. Kendrew, Science, 139, 1259 (1963); R. Huber, O. Epp, and H. Formanek, J. MoI. Biol., 42, 591 (1971).
(8) M. F. Perutz and L. F. TenEyck, Cold Spring Harbor Symp. Quant. Biol., 36, 295 (1971); M. F. Perutz, Nature (London), 237, 495 (1972).
(9) R. J. P. Williams, Cold Spring Harbor Symp. Quant. Biol., 36, 53 (1971). (10) E. B. Fleischer, Acc. Chem. Res., 3, 105 (1970).
(11) D. M. Collins, W. R. Sheidt, and J. L. Hoard, J. Am. Chem. Soc., 94, 6689 (1972).
(12) A. L. Stone and E. B. Fleischer, J. Am. Chem. Soc., 90, 2735 (1968).
(13) T. A. Hamor, W. S. Caughey, and J. L. Hoard, J. Am. Chem. Soc., 87, 2305 (1965)
(14) M. Zerner, M. Gouterman, and H. Kobayashi, Theor. Chim. Acta, 6, 363 (1966).
(15) G. N. La Mar, J. Am. Chem. Soc., 95, 1662 (1973).
(16) G. N. La Mar, Pure Appl. Chem., 40, 13 (1974).
(17) G. N. La Mar, G. R. Eaton, R. H. Holm, and F. A. Walker, J. Am, Chem. Soc., 95, 63 (1973).
(18) F. A. Walker and G. N. La Mar, Ann. N. Y. Acad. Scl., 206, 328 (1973)
(19) G. N. La Mar and F. A. Walker, J. Am. Chem. Soc., 94, 8607 (1972).
(20) E. B. Fleischer, S. Jacobs, and L. Mestichelli, J. Am. Chem. Soc., 90, 2527 (1968); G. B. Kolski and R. A. Plane, ibid., 94, 3740 (1972); B. B. Hasinoff, H. B. Dunford, and D. G. Horne, Can. J. Chem., 47, 3225 (1969); N. S. Angerman, B. B. Hasinoff, H. B. Dunford, and R. B. Jordan, ibid., 47, 3217 (1969); J. Hodgkinson and R. B. Jordan, J. Am. Chem. Soc., 95, 763 (1973); H. A. Degani and D. Fiat, ibid., 93, 4281 (1971).
(21) C. G. Grimes and R. G. Pearson, Inorg. Chem., 13, 970 (1974); C. G. Grimes, Ph.D. Thesis, Northwestern University, 1973.
(22) A. D. Adler, F. R. Longo, F. Kampas, and J. Kim, J. Inorg. Nucl. Chem., 32, 2443 (1970).
(23) G. N. La Mar and F. A. Walker, J. Am. Chem. Soc., 95, 6950 (1973).
(24) M. F. Reich and I. A. Cohen, J. Inorg. Nucl. Chem. 32, 343 (1970).
(25) C. R. Witschanke and C. A. Kraus, J. Am. Chem. Soc., 69, 2473 (1947).
(26) This program was kindly provided by L. H. Pignolet.
(27) J. A. Pople, W. G. Schneider, and H. J. Bernstein, 'High Resolution Nuclear Magnetic Resonance", McGraw-Hill, New York, N.Y., 1959, Chapter 10.
(28) G. N. La Mar and E. O. Sherman, J. Am. Chem. Soc. 92, 2691 (1970).
(29) M. Momenteau, J. Mispelter, and D. Lexa, Biochim. Biophys. Acta, 322, 38 (1973).
(30) J. T. Thomas and D. F. Evans, J. Phys. Chem., 74, 3812 (1970); M. A. Matesich, J. A. Nadas, and D. F. Evans, ibid., 74, 4568 (1970); D. F. Evans, J. Thomas, J. A. Nadas, and M. A. Matesich, ibid., 75, 1714 (1971).
(31) The large uncertainty in ΔH 牛 for inversion in the case of $p-\mathrm{CH}_{3}-\mathrm{TPPFeCl}$ is due to the fact that at the temperatures where inversion kinetics were determined, the two mH protons can also average by phenyl rotation (G) R. Eaton and S. S. Eaton, J. Am. Chem. Soc., 97, 3660 (1975)). This process is concentration independent so that it can be clearly distinguished from inversion. The two processes overlap in the temperature range 20-30 ${ }^{\circ} \mathrm{C}$. Although attempts were made to correct for phenyl rotation kinetics, the inability to clearly define the phenyl rotation kinetic parameter introduces sizable uncertainties in the line broadening due to inversion.
(32) There is some evidence that these porphyrin dimerize in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ ($R . V$. Snyder and G. N. La Mar, unpublished observations). Thus the molecularity of the associative invesion with respect to $\mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{X}^{-}$is 1.0 , but only ~ 0.9 with respect to porphyrin. This small extent of dimerization at 25°, however, is unlikely to affect the relative rates of inversion for different parasubstituents.
(33) J. E. Falk and J. N. Phillips, Nature (London), 212, 153 (1966); W. S. Caughey, W. Y. Fujimoto, and B. P. Johnson, Biochemistry, 5, 3830 (1966).
(34) In acetone, addition of Hgl_{2} to $p-\mathrm{CH}_{3}$-TPPFel caused a decrease in the $512-\mathrm{nm}$ band and the growth of a new peak at 527 nm . Subsequent addition of $\mathrm{Bu}_{4} \mathrm{~N}^{+} 1^{-}$reversed the process.
(35) The authors are indebted to F. Basolo for this suggestion.
(36) F. Gaizer and G. Johansson, Acta Chem. Scand., 22, 3013 (1968); M. A. Hooper and D. W. James, Aust. J. Chem., 24, 1345 (1971).
(37) G. B. Deacon, Rev. Pure Appl. Chem., 13, 189 (1963).
(38) S. S. Eaton and G. R. Eaton, J. Chem. Soc., Chem. Commun., 576 (1974).
(39) F. A. Cotton and G. Wilkinson, "Advanced Inorganic Chemistry", Interscience, New York, N.Y., 1966.

Solute Complexes in Aqueous Gadolinium(III) Chloride Solutions

Marcus L. Steele and D. L. Wertz*
Contribution from the Department of Chemistry, University of Southern Mississippi, Hattiesburg, Mississippi 39401. Received September 16, 1975

Abstract

The structure of the average solute species in two concentrated aqueous solutions of GdCl_{3}, with and without added hydrochloric acid, has been measured. In each solution Gd^{3+} has $8(\pm 0.2)$ nearest neighbors. The average solute species are $\mathrm{Gd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}{ }^{3+}$ in the aqueous solution and $\mathrm{Cl}_{2} \mathrm{Gd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{+}$in the solution in which hydrochloric acid is the solvent. The average $\mathrm{Gd}-\mathrm{O}$ nearest neighbor distance has been measured to be $2.37(\pm 0.02) \AA$, and the nearest neighbor $\mathrm{Gd}-\mathrm{Cl}$ distance has been calculated to be ca. $2.8 \AA$. The ion-pair $\mathrm{Gd} . . . \mathrm{Cl}$ distance ranges from 4.8 to $5.0 \AA$. On the average, dichlorohexaquogadolinium(III) appears to be pseudocubic ($D_{3 h}$), but no satisfactory solute model of $\mathrm{Gd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}{ }^{3+}$ has been found.

Introduction

Interest in the aqueous solution chemistry of Gd^{3+} has dramatically increased in the past few years because of its frequent use as a lanthanide shift reagent, ${ }^{1}$ a probe in studying metal-amino acid complexes, ${ }^{2,3}$ and because of the "gadoli-
nium break" ${ }^{4}$ observed in many theromodynamic measurements of solutions containing various lanthanide salts. Notwithstanding, the solution chemistry of Gd^{3+} has not been thoroughly studied and is not well understood. As noted by Mioduski and Siekierski, ${ }^{5}$ considerable question still exists regarding the coordination number(s) of the various lan-

Table I. Solution Compositions

		Mole fractions				
	Molality, mol/kg	Gd	Cl	O	H	Density, g / ml
A^{a}	2.66	0.015	0.045	0.313	0.627	1.58
$\mathrm{~B}^{b}$	1.55	0.010	0.060	0.300	0.630	1.34

${ }^{a}$ The solvent is distilled deionized water. The stoichiometric ratio of chloride/gadolinium is $3: 1 .{ }^{b}$ The solvent is 10 N hydrochloric acid. The stoichiometric ratio of chloride/gadolinium is $6: 1$.

Figure 1. Schematic of the $\theta-\theta$ diffractometer. The figure is not drawn to scale, and the divergence-convergence of the x-ray beam is not shown. A, X-ray tube; B, exit slit; C, incident beam; D, scattered beam; E, receiving slits; F, antiscatter slit; G, crystal monochromator; H, detector; S, sample; θ, scattering angle.
thanides in aqueous solutions ${ }^{6-12}$ and whether the coordination number(s) change as a function of the lanthanide cation and/ or other chemical parameters in such solutions.

Spedding and Mundy ${ }^{13}$ have shown that water molecules (in a solvent of 95% water and 5% deuterium oxide) are affected differently by Gd^{3+} than by La^{3+} when the lanthanide is introduced as LnCl_{3}. These findings are consistent with the fact that La^{3+} is nine-coordinated in $\mathrm{LaCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O},{ }^{14}$ but that Gd^{3+} is eight-coordinated in $\mathrm{GdCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O} .{ }^{15}$ However, it has recently been shown that La^{3+} is eight-coordinated in aqueous solutions of $\mathrm{LaCl}_{3}{ }^{16}$ and $\mathrm{LaBr}_{3},{ }^{17}$ and Morgan ${ }^{9}$ has suggested that in aqueous solutions of $\mathrm{Gd}\left(\mathrm{ClO}_{4}\right)_{3}, \mathrm{Gd}^{3+}$ is either eight- or nine-coordinated. The accumulation of thermodynamic, ${ }^{4,5,18-25}$ electrochemical, ${ }^{26-30}$ spectra, ${ }^{31-36}$ and/or formation constant studies ${ }^{37-40}$ have not led to definitive assignments of the coordination number(s) or to understanding of the coordination details of the various lanthanides in solutions.

In an attempt to determine the coordination details of Gd^{3+} in very concentrated aqueous solutions, we have examined two aqueous solutions of GdCl_{3}, with and without added hydrochloric acid, via x-ray diffraction methods utilizing Mo $\mathrm{K} \alpha$ x -rays.

Experimental Section

Solutions were prepared by weight from predried anhydrous GdCl_{3}. Densities were measured with a specific gravity bulb. Solution compositions are shown in Table I. Each solution was loaded into a Teflon sample holder, which had a window covered by a $1.0-\mathrm{mil}$ Mylar film, and an x-ray diffraction pattern was obtained using the reflection method. ${ }^{41}$ Scattered intensities were collected using our $\theta-\theta$ diffractometer (Figure 1) as counts per preset time as a function of the scattering angle from $s=1.23$ to $15.09 \AA^{-1}\left(s=4 \pi \lambda^{-1} \sin \theta\right)$ at increments in θ of 0.25°. At least three runs over the entire angular range were made for each solution. The average intensity at each scattering point was used in subsequent calculations. For these solutions the maximum value of $\sigma^{42}<1 \%$, and σ is significantly lower at most of the 219 data points at which data were collected.

The scattered intensity was corrected for background (ca. 5 cpm), for polarization, ${ }^{43}$ sample penetration, ${ }^{44}$ multiple scattering, ${ }^{45}$ and, after inclusion of a monochromator discrimination function, Compton scattering. ${ }^{46}$ The corrected intensity, e.g., the coherent intensity curve $I(s)$, was then tentatively computer fitted to $\sum x_{i} f_{i}^{2}(s),{ }^{47}$ according to the methods of Lawrence and Kruh. ${ }^{48}$ Final fitting of $I(s)$ to

Figure 2. The i(s) functions for the solutions.
Table II. Summary of the ARDF's

	Soln A	Soln B
P1, \AA	2.37	2.48
P1 A, e^{2}	114	105
Area $\operatorname{~er~Gd,~}{ }^{a} \mathrm{e}^{2}$	7.6×10^{3}	1.05×10^{4}
P2 \AA	3.2	3.2
P, \AA	3.9	4.0
P4, \AA	4.8	5.0
P5, \AA	5.9	b
P6, \AA	6.8	6.9

${ }^{a}$ The area per gadolinium $=\mathrm{P} 1 \mathrm{~A} / \mathrm{mol}$ fraction of gadolinium. ${ }^{b}$ This peak is barely discernible in the ARDF of solution B at 5.8 \AA.
$\sum x_{i} f_{i}^{2}(s)$ was performed by a method similar to that used by Konnert and Karle. ${ }^{49}$ Atomic radial distribution functions (ARDF's) were calculated at increments in Δr of 0.01 and $0.05 \AA$ by ${ }^{41}$

$$
\mathrm{D}(r)=4 \pi r^{2} \rho_{0}+(2 r / \pi) \int[s i(s)][\mathrm{M}(s)][\sin s r] \mathrm{d} s
$$

With this method $\mathrm{D}(r)$ provides a weighted measure of the probability of finding atom pairs in the solution separated by a distance between r and $r+\mathrm{d} r, \rho_{0}$ is the bulk density of the solution, $s i(s)=s\left[I_{\text {coh }}(s)\right.$ $\left.-\sum x_{i} f_{i}^{2}(s)\right]$, and

$$
\mathrm{M}(s)=\left\{\left[\sum x_{i} f_{i}(0) / \sum x_{i} f_{i}(s)\right]\right\}^{2}\left\{\exp \left(-b s^{2}\right)\right\} \mathrm{USF}
$$

USF is a unit step function which terminates the integral at $s_{\text {max }}=$ $15 \AA^{-1}$.
Shown in Figure 2 are the $\mathrm{i}(s)$ functions for the solutions, and in Figure 3 are the ARDF's obtained with $b=0.010$. Shown in Figure 4 are the atom-pair correlation functions (APCF) (e.g., $g(r)=$ $\mathrm{D}(r) / 4 \pi r^{2} \rho_{0}$) obtained for the solutions. Summarized in Table II are the ARDF's.

The area under the first peak in each ARDF was determined via repeated graphical integration, so that deviation from the mean area of each first peak was $<2 \%$ of the peak area.

For each solution the area anticipated for one $\mathrm{Gd}-\mathrm{Cl}$ pair $\left(\mathrm{A}_{\mathrm{Gd}-\mathrm{Cl}}\right)$ and that for one Gd-O pair ($A_{\mathrm{Gd}-\mathrm{O}}$) were calculated by the method of Waser and Schomaker: ${ }^{50} A_{\mathrm{Gd}-\mathrm{O}}=950$ and $A_{\mathrm{Gd}-\mathrm{Cl}}=2400 \mathrm{e}^{2}$.

Both the position of and the area under the first peak have been

Figure 3. The ARDF's of the two solutions with $b=0.01$.
utilized to determine the average inner-sphere coordination of Gd^{3+} in each solution by

$$
\begin{gather*}
\mathrm{P} 1 \simeq n_{1} d_{\mathrm{Gd}-\mathrm{O}}+n_{2} Q d_{\mathrm{Gd}-\mathrm{Cl}} \tag{1}\\
\mathrm{P} 1 A=n_{1} \cdot 950 \mathrm{e}^{2}+n_{2} \cdot 2400 \mathrm{e}^{2} \tag{2}
\end{gather*}
$$

In these equations, n_{1} and n_{2} are the average number of $\mathrm{Gd}-\mathrm{O}$ and $\mathrm{Gd}-\mathrm{Cl}$ contacts per $\mathrm{Gd}^{3+}, d_{\mathrm{Gd}-\mathrm{X}_{\mathrm{i}}}$ are the $\mathrm{Gd}-\mathrm{O}$ and $\mathrm{Gd}-\mathrm{Cl}$ distances as determined in crystals, $Q \simeq A_{\mathrm{Gd}-\mathrm{Cl}} / A_{\mathrm{Gd}-\mathrm{O}}, \mathrm{P} 1$ is the location of the first peak, and $\mathrm{P} 1 A$ is the area under the peak in each ARDF.
Based upon this method of correlating the primary peak in the ARDF with the average inner-sphere coordination of a cation, the uncertainty in the determination of the coordination number of the cation is not significantly larger than the uncertainty in the area under the primary peak. In several other solutions, ${ }^{51}$ the maximum uncertainty in the coordination number of the cation appears to be less than 0.2 , and this is consistent with error estimates by Konnert and Karle. ${ }^{49}$

Results and Discussion

The ARDF's obtained for the two solutions are generally similar, indicating that the average coordination of Gd^{3+} in these solutions is similar. However, as the stoichometric ratio of chloride/gadolinium increases, the maximum of the first peak shifts from ca. 2.37 to ca. $2.48 \AA, \mathrm{P} 4$ shifts from 4.8 to 5.0 \AA, and P5, a large peak in the ARDF of solution A, becomes barely discernible in the ARDF of solution B. The areas per gadolinium are $7.60 \times 10^{3} \mathrm{e}^{2}$ in solution A and $1.05 \times 10^{4} \mathrm{e}^{2}$ in solution B. The shift in the location of P1 and the increase in the area per gadolinium indicate that there is significantly more inner-sphere $\mathrm{Gd}-\mathrm{Cl}$ bonding in solution B than in solution A.

Solution A. The location of the first peak ($2.37 \AA$) is consistent with Gd-O inner-sphere bonding, ${ }^{15,52,53}$ and the area per gadolinium indicates that each Gd^{3+} has, on the average, ca. eight nearest oxygen (water) neighbors. ${ }^{54}$ An eight-coordinated species is consistent with the results obtained from a study of aqueous LaCl_{3} solutions ${ }^{16,17}$ and the coordination of Gd^{3+} in crystalline $\mathrm{GdCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O} .{ }^{15}$ Though P 1 A can be related to a six-coordinated model, this model requires extensive $\mathrm{Gd}-\mathrm{Cl}$ as well as $\mathrm{Gd}-\mathrm{O}$ inner-sphere bonding. The location of Pl indicates that inner-sphere $\mathrm{Gd}-\mathrm{Cl}$ bonding is unimportant in this solution.

Figure 4. The APCF's of the two solutions. For each solution $\mathrm{g}(r)=$ $\mathrm{D}(r) / 4 \pi r^{2} \rho_{0}$.

Solution B. The similarities of the two ARDF's indicate that Gd^{3+} is, on the average, eight-coordinated in solution B as well, with Pl again describing the inner-sphere Gd-ligand interactions. From evaluation of eq 2 , the area per gadolinium is consistent with $n_{1} \simeq 6.0$ and $n_{2} \simeq 2.0$; i.e., the average solute species in solution B is approximately $\mathrm{Cl}_{2} \mathrm{Gd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{+}{ }^{55}$ From evaluation of eq 1 and assuming the $\mathrm{Gd}-\mathrm{O}$ distance is $2.37 \AA$, the $\mathrm{Gd}-\mathrm{Cl}$ (inner-sphere) bond distance is estimated to be ca. $2.8 \AA$. Both the average complex, $\mathrm{Cl}_{2} \mathrm{Gd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{+}$, and the inner-sphere $\mathrm{Gd}-\mathrm{Cl}$ distance, ca. $2.8 \AA$, are consistent with the complex ion found in crystalline $\mathrm{GdCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O} .{ }^{15}$

The Second Peak. In aqueous solutions which contain chloride, ${ }^{16,51,56-62}$ hydrogen-bonded $\mathrm{Cl}-\mathrm{O}$ interactions occur at 3.15-3.30 \AA. The ARDF's of both of these solutions exhibit a peak at this distance. Consequently, the existence of P2 neither supports nor eliminates any coordination models, since it is due primarily, if not totally, to hydrogen-bonded $\mathrm{Cl}-\mathrm{O}$ interactions.

Speculations Concerning the Remaining Peaks. Since in aqueous $\mathrm{LaCl}_{3}{ }^{16}$ and ErCl_{3} solutions, ${ }^{6}$ ion-pair $\mathrm{Ln} \cdots \mathrm{Cl}$ interactions occur at 4.7 and $4.6 \AA$, respectively, P 4 in each solution has been assigned to ion-pair $\mathrm{Gd} \cdots \mathrm{Cl}$ interactions. This peak occurs at $4.8 \AA$ in solution A and $5.0 \AA$ in solution B , where inclusion of chlorides into the inner sphere causes the average ion-pair $\mathrm{Gd} \ldots \mathrm{Cl}$ distance to be increased. Zachariasen et al. find this interaction at a distance comparable to $5.0 \AA$ in crystalline $\mathrm{GdCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, which contains two inner-sphere chlorides. ${ }^{15}$

Solute Modeling. A pseudocubic model of $\mathrm{Cl}_{2} \mathrm{Gd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{+}$ accounts for the ARDF obtained for solution B if it assumed that the outer-sphere chlorides occupy sites adjacent to the faces of the inner-sphere complex. The nonbonded distances consistent with this model are shown in Table III, and the model is shown in Figure 5. The peak observed at $3.2 \AA$ may be attributed to nonbonded $\mathrm{Cl} \cdots \mathrm{O}$ interactions as well as to hydrogen-bonded $\mathrm{Cl}-\mathrm{O}$ interactions. The peak at $4.0 \AA$ may be attributed to nonbonded Cl...O interactions (at 4.0 and 4.1 \AA), to nonbonded $\mathrm{O} \ldots \mathrm{O}$ interactions (at $3.9 \AA$) and to nonbonded $\mathrm{Cl} \cdots \mathrm{Cl}$ interactions (at $4.1 \AA$). The peak observed at $5.0 \AA$ may be attributed primarily to outersphere $\mathrm{Gd}-\mathrm{Cl}$ interactions and also to nonbonded O...O interactions. The peak at $6.9 \AA$ may be attributed to nonbonded $\mathrm{Cl} \ldots \mathrm{O}$ and nonbonded $\mathrm{Cl} \cdots \mathrm{Cl}$ interactions.

We have considered several other stereochemical arrangements of this solute species, i.e., $\mathrm{GdCl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{+}$, but these models do not account for the ARDF obtained for solution B.

Our attempts to model the stereochemistry of the solute species in solution A, e.g., $\mathrm{Gd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}{ }^{3+}$, have been unsuccessful. Of the several square antiprismatic models and the triangular dodecahedral models that we have considered, all

Table III, A Pseudocubic Model of $\mathrm{Cl}_{2} \mathrm{Gd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{+}$

Atom pair	Distance, \AA	No.	Peak in ARDF
$\mathrm{O}_{\mathrm{a}} \cdots \mathrm{O}_{\mathrm{b}}$	2.7	2 per O	a
$\mathrm{Cl}_{\mathrm{a}} \cdots \mathrm{O}_{\mathrm{a}}$	3.1	3 per $\mathrm{Cl}_{\text {is }}$	2
$\mathrm{O}_{\mathrm{a}} \cdots \mathrm{O}_{\mathrm{c}}$	3.9	2 per O	3
$\mathrm{Cl}_{\mathrm{a}} \cdots \mathrm{O}_{\mathrm{d}}$	4.0	3 per $\mathrm{Cl}_{\text {is }}$	3
$\mathrm{Cl}_{\mathrm{c}} \cdots \mathrm{Cl}_{\mathrm{a}}$	4.1	1 per $\mathrm{Cl}_{\text {os }}$	3
$\mathrm{Cl}_{\mathrm{c}} \cdots \mathrm{O}_{\mathrm{a}}$	4.1	3 per $\mathrm{Cl}_{\text {os }}$	3
$\mathrm{O}_{\mathrm{a}} \cdots \mathrm{O}_{\mathrm{d}}$	4.7	1 per O	4
$\mathrm{Gd}-\mathrm{Cl}$ (ion pair)	5.0	1 per $\mathrm{Cl}_{\text {os }}$	4
$\mathrm{Cl}_{\mathrm{a}} \cdots \mathrm{Cl}_{\mathrm{b}}$	5.6	1 per $\mathrm{Cl}_{\text {is }}$	a
$\mathrm{Cl}_{\mathrm{c}} \cdots \mathrm{O}_{\mathrm{b}}$	6.7	3 per $\mathrm{Cl}_{\text {os }}$	6
$\mathrm{Cl}_{\mathrm{b}} \cdots \mathrm{Cl}_{\mathrm{c}}$	7.0	1 per $\mathrm{Cl}_{\text {os }}$	6
$\mathrm{Cl}_{\mathrm{c}} \cdots \mathrm{Cl}_{\mathrm{d}}$	7.0	b	6
$\mathrm{Cl}_{\mathrm{c}} \cdots \mathrm{Cl}_{e}$	10.0	b	a

${ }^{a}$ A peak in the ARDF does not occur at this distance. ${ }^{b}$ The number of times these interactions occur in the ARDF is dependent upon chloride simultaneously occupying these sites in the second coordination sphere.
of these models predict large peaks which do not appear in the ARDF of this solution, and none account for all of the peaks which do appear. A cubic model of $\mathrm{Gd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}{ }^{3+}$ with the chlorides located at sites adjacent to the edges of the cube also cannot account for the ARDF. The cubic model of Gd$\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}{ }^{3+}$ with the outer-sphere chlorides located adjacent to faces of the inner polyhedron is consistent with the ARDF of solution A, except that it cannot account for the peak observed at ca. $6.0 \AA$. This model represents a possible description of the solute species in solution A only if it is assumed that P5 is not due to "rigid" solute structuring, and this assumption cannot be justified.

Consequently it may be concluded that the model described in Figure 5 is consistent with the ARDF of solution B but that no model has been found which accounts for the average solute species found in solution A.

Conclusions

In concentrated aqueous solutions, with and without added hydrochloric acid, Gd^{3+} is eight-coordinated. In the aqueous solution, $\mathrm{Gd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}{ }^{3+}$ is the average cationic species, and the $\mathrm{Gd}-\mathrm{O}$ bond distance is ca. $2.37 \AA$. In the presence of a large excess of hydrogen chloride, $\mathrm{Cl}_{2} \mathrm{Gd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{+}$is the average species, and the inner-sphere $\mathrm{Gd}-\mathrm{Cl}$ bond distance is ca. 2.8 \AA. Ion-pair Gd - Cl bond distances are ca. $4.8 \AA$ in the aqueous solution and ca. $5.0 \AA$ in the acidic solution. A pseudocubic model of $\mathrm{Cl}_{2} \mathrm{Gd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{+}$represents a plausible description of the stereochemistry of this species, but no model of Gd$\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}{ }^{3+}$ is consistent with all of the peaks observed in the ARDF of the aqueous solution.

In aqueous and acidic solutions of LaCl_{3} and LaBr_{3}, only $\mathrm{La}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}{ }_{8}{ }^{3+}$ is found, even when the solute is 10.0 N hydrohalic acid. ${ }^{16,17}$ That inner-sphere $\mathrm{Gd}-\mathrm{Cl}$ bonding occurs in solution B indicates that chloride ion is a far better coordinating ligand toward $\mathrm{Gd}_{\mathrm{aq}}{ }^{3+}$ than toward $\mathrm{La}_{\mathrm{aq}}{ }^{3+}$. The different ligand affinities observed for Gd^{3+} and La^{3+} in these very concentrated solutions are consistent with the "different" Raman spectra observed for GdX_{3} and LaX_{3} solutions. ${ }^{5}$ That inner-sphere $\mathrm{Gd}-\mathrm{Cl}$ bonding occurs in solution B , while no $\mathrm{La}-\mathrm{Cl}$ inner-sphere bonding occurs in a similar solution, may be explained in two plausible ways: (a) Gd^{3+}, with a significantly larger ionic potential than La^{3+}, is better able to polarize and subsequently to bond to chlorides; and/or (b) the 4 f electrons of Gd^{3+} are involved in and necessary for the $\mathrm{Gd}-\mathrm{Cl}$ inner-sphere bonding. It is, however, beyond the scope of the x-ray diffraction experiments to validate either or both of these speculations.

Figure 5. A pseudocubic model of $\mathrm{Cl}_{2} \mathrm{Gd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{+}$. The inner-sphere $\mathrm{Gd}-\mathrm{O}$ distance is $2.37 \AA$, and the inner-sphere Gd-Cl distance has been assumed to be ca. $2.8 \AA$.

The extent to which structural details obtained from these very concentrated solutions may be extrapolated to dilute solutions is unknown.

Acknowledgment. Support from the Research Corporation and the National Aeronautics and Space Administration is gratefully acknowledged.

References and Notes

(1) K. Ajisaka and M. Kainosho, J. Am. Chem. Soc., 97, 330 (1975).
(2) R. Jones, R. A. Dwek, and S. Forsen, Eur. J. Biochem., 47, 271 (1974).
(3) V. E. Plyushchev et al., Zh. Neorg. Khim., 20, 60 (1975).
(4) G. Schwarzenbach and R. Gat, Helv. Chim. Acta, 39, 1589 (1956).
(5) T. Mioduski and S. Siekierski, J. Inorg. Nucl., Chem., 37, 1647 (1975).
(6) G. W. Brady, J. Chem. Phys., 33, 1079 (1960).
(7) E. V. Sayre, J. Chem. Phys., 26, 109 (1957).
(8) I. I. Antipova and I. I. Kutsenko, Zh. Neorg. Khim., 9, 615 (1964).
(9) L. O. Morgan, J. Chem. Phys.. 38, 2788 (1963).
(10) F. H. Spedding, M. J. Pikal, and B. O. Ayers, J. Phys. Chem., 70, 2440 (1966).
(11) G. Geier and U. Karlen, Helv. Chim. Acta, 54, 135 (1971).
(12) A. Fratiello, V. Kubo, S. Peak, B. Sanchez, and R. E. Schuster, Inorg. Chem., 10, 2552 (1971).
(13) F. H. Spedding and W. C. Mundy, J. Chem. Phys., 59, 2183 (1973).
(14) V. V. Bakakin, R. F. Klevstova, and L. P. Solov'eva, Zh. Strukt. Khim., 15, 820 (1974).
(15) W. H. Zachariasen, M. Marezio, and H. A. Plettinger, Acta Crystallogr., 14, 234 (1961).
(16) L. S. Smith and D. L. Wertz, J. Am. Chem. Soc., 97, 2365 (1975).
(17) L. S. Smith and D. L. Wertz, submitted for publication.
(18) J. L. Hoard, B. Lee, and M. D. Lind, J. Am. Chem. Soc., 87, 1612 (1965).
(19) T. Moeller and R. Ferrus, J. Inorg. Nucl. Chem., 20, 261 (1961).
(20) G. R. Choppin and S. L. Bertha, Inorg. Chem., 8, 613 (1969).
(21) L. A. K. Staveley, D. R. Markham, and M. R. Jones, J. Inorg. Nucl. Chem., 30, 231 (1968).
(22) F. H. Spedding, P. F. Cullen, and A. Haben Schuss, J. Phys. Chem., 78, 1106 (1974).
(23) R. C. Agarwal, J. Indian Chem. Soc., 51, 772 (1974).
(24) F. H. Spedding et al., J. Chem. Phys., 60, 1578 (1974).
(25) I. M. Batyaev and R. S. Fogileva, Zh. Neorg. Khim., 19, 670 (1974).
(26) L. J. Nugent et al., J. Phys. Chem., 77, 1528 (1973); J. Inorg. Nucl. Chem., 37, 1767 (1975).
(27) F. H. Spedding, J. A. Rard, and V. W. Saeger, J. Chem. Eng. Data, 19, 373 (1974).
(28) T. Goto and M. Smutz, J. Inorg. Nucl. Chem., 27, 663 (1965).
(29) D. F. Peppard, G. W. Mason, and I. Hucker, J. Inorg. Nucl. Chem., 24, 881 (1961).
(30) G. R. Chopin, D. E. Henrie, and K. Bajis, Inorg. Chem., 5, 1743 (1966).
(31) B. G. Wybourne, "Spectroscopic Properties of the Rare Earths", Wiley, New York, N.Y., 1965.
(32) J. Foos, A. S. Kertes, and M. E. Peleg, J. Inorg. Nucl. Chem., 36, 837 (1974).
(33) D. L. Nelson and D. E. Irish, J. Chem. Phys., 54, 4479 (1971); J. Chem. Soc., Faraday Trans. 1, 69, 156 (1973).
(34) D. G. Karraker, Inorg. Chem., 7, 473 (1968).
(35) I. M. Batyaev et al., Zh. Neorg. Khim., 16, 66 (1971); 18, 1451 (1973).
(36) E. I. Chubakova and N. A. Skorik, Zh. Neorg. Khim., 18, 1446 (1973).
(37) R. J. Hinchey and J. W. Cobble, Inorg. Chem., 9, 917 (1970).
(38) G. R. Choppin and P. J. Unrein, J. Inorg. Nucl. Chem., 25, 387 (1965).
(39) N. N. Kozachenko and I. M. Batyaev, Zh. Neorg. Khim., 15, 888 (1970); 16, 66, 125, 1841 (1971); 18, 938 (1973).
(40) N. K. Davidenko, L. N. Lugina, and K. P. Yatsimirskii, Zh. Neorg. Khim., 17, 104 (1972); 18, 1453 (1973).
(41) R. F. Kruh. Chem. Rev., 62, 319 (1962).
(42) $\sigma=$ (total counts) ${ }^{-1 / 2} \times 100$ at each of the 219 data points.
(43) B. D. Cullity, 'Elements of X-ray Diffraction', Addison-Wesley, Reading, Mass., 1956, p 172.
(44) H. A. Levy, M. D. Danford, and A. H. Narten, Report No. 3960, Oak Ridge National Laboratories, Oak Ridge, Tenn., 1966.
(45) B. E. Warren, 'X-ray Diffraction',' Addison-Wesley, Reading, Mass., 1969,

[^0](53) P. Polx, C. R. Acad. Scl., Ser. C, 270, 1852 (1970)
(54) $n_{1}=7.6 \times 10^{3} \mathrm{e}^{2} / 9.5 \times 10^{2} \mathrm{e}^{2}=8.0$
(55) Assuming $n_{1}+n_{2}=8$, then $n_{1} \simeq 6.0$ and $n_{2} \simeq 2.0$ to satisfy the relationship $1.05 \times 10^{4} e^{2}=n_{1} \times 9.5 \times 10^{2} e^{2}+n_{2} \times 2.4 \times 10^{3} e^{2}$.
(56) S. C. Lee and R. Kaplow, Sclence, 169, 477 (1970).
(57) D. L. Wertz, J. Solution Chem., 1, 489 (1972).
(58) R. M. Lawrence and R. F. Kruh, J. Chem. Phys., 47, 4758 (1967).
(59) D. L. Wertz and R. F. Kruh, J. Chem. Phys., 50, 4313 (1969).
(60) J. N. Albright, J. Chem. Phys., 56, 3783 (1972).
(61) J. R. Bell and D. L. Wertz, J. Am. Chem. Soc., 95, 1456 (1973).
(62) J. L. Tyvoll and D. L. Wertz, J. Jnorg. Nucl. Chem., 36, 3713 (1974).

Quadrupole Coupling Constants of Square-Planar Copper(II)-Sulfur Complexes from Single-Crystal Electron Paramagnetic Resonance Spectroscopy

Lawrence K. White and R. Linn Belford*
Contribution from the Department of Chemistry, University of Illinois, Urbana, Illinois 61801. Received September 2, 1975

Abstract

The nuclear quadrupole coupling parameters are measured for copper in six square-planar complexes, five having sulfur donor atoms and one having both sulfur and oxygen donors. Computer simulations of the EPR spectra of the Cu-doped powders are employed to refine the principal g and A values. The secondary ($\Delta m_{I}=1$) transitions of the EPR spectra of Cu doped single crystals are analyzed for the quadrupole coupling parameters. The small quadrupole coupling constant for the $\mathrm{Cu}-\mathrm{S}_{4}$ complexes ($Q D \approx 0.7 \times 10^{-4} \mathrm{~cm}^{-1}$) implies an effectively spherical symmetry which is attributed chiefly to the large covalent character of the $\mathrm{Cu}-\mathrm{S} \sigma$ bond. A few anomalies are observed in the quadrupole data. A larger quadrupole coupling constant is observed for diethyl dithiophosphate, $\mathrm{Cu}\left(\mathrm{S}_{2} \mathrm{P}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{2}\right)_{2}$, than for other $\mathrm{Cu}-\mathrm{S}_{4}$ complexes studied, i.e., 1.8×10^{-4} cm^{-1} compared to $0.7 \times 10^{-4} \mathrm{~cm}^{-1}$. Also, a large asymmetry parameter ($Q E$) is observed for the bis(maleonitriledithiolate) copperate(II), $\mathrm{Cu}(\mathrm{mnt})_{2}{ }^{2-}$, dianion and the mixed S-O square-planar complex copper(II) bis(cis-monothiodibenzoylmethanate), $\mathrm{Cu}(\mathrm{SdbmO})_{2}$. The quadrupole coupling parameters may be sensitive to $\mathrm{Cu}-\mathrm{P}$ transannular interaction in $\mathrm{Cu}-$ $\left(\mathrm{S}_{2} \mathrm{P}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{2}\right)$ and to the strong complex π bonding present in $\mathrm{Cu}(\mathrm{mnt})_{2}{ }^{2-}$.

I. Introduction

In the early 1950's Bleaney ${ }^{1-3}$ suggested that quadrupole coupling data could be obtained from single-crystal EPR studies. So and Belford ${ }^{4,5}$ examined the secondary (or forbidden $\Delta m_{I}= \pm 1$) transitions in the single-crystal EPR spectra of several $\mathrm{Cu}-\mathrm{O}$ complexes, including four squareplanar β-ketoenolates (typified by $\mathrm{Cu}(\mathrm{acac})_{2}$, bis(2,4 -pentanedionato) copper(II), I) and one square-planar copper-(II)-sulfur complex ($\mathrm{Cu}(\mathrm{dtc})_{2}$, bis(diethyl dithiocarbamate)copper(II), II). Recently we reported ${ }^{6}$ the quadrupole coupling

II
1
constant of another square-planar $\mathrm{Cu}-\mathrm{O}$ complex ($\mathrm{Cu}-$ $\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}{ }^{2-}$, bis(oxalato)cuprate(II) dianion, III). These studies have been continued. Here we study several copper(II)-sulfur complexes of square-planar geometry to determine the sensitivity of the quadrupole coupling parameter to more subtle aspects of the electronic structures of the molecules. The quadrupole coupling parameters are obtained from the sin-gle-crystal EPR spectra for five square-planar $\mathrm{Cu}-\mathrm{S}$ complexes: Cu (dto) 2^{2-}, bis(dithiooxalate) cuprate(II), IV; Cu (imnt $)^{-2}$, bis(1,1-dicyano-2,2-dithioethylene)cuprate(II), V; $\mathrm{Cu}(\mathrm{dtc})_{2}{ }^{2-}$, II, EPR data repeated; $\mathrm{Cu}\left(\mathrm{S}_{2} \mathrm{P}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{2}\right)_{2}$, bis(diethyl dithiophosphate)coppe!(II) (in Ni host), VI; and $\mathrm{Cu}(\mathrm{mnt}) 2^{2-}$, bis(1,2-dicyano-1,2-dithioethylene)cuprate(II), VII. We also report data for one mixed sulfur-oxygen donor

-2

complex $\mathrm{Cu}(\mathrm{SdbmO})_{2}$, copper(II) bis(cis-monothiodibenzoylmethanate) (VIII).

We have employed EPR data obtained from computer simulation of powdered samples to help analyze the singlecrystal EPR spectra for these nearly axial systems. The features of the EPR spectrum of a powder are extremely sensitive to the magnitude of the principal g and A values; easily obtainable precisions are ± 0.0003 for g and $\pm 0.3 \times 10^{-4} \mathrm{~cm}^{-1}$ for A. Since the hyperfine interaction in these compounds is much larger than either the nuclear Zeeman or nuclear quadrupole interaction, neither the line positions nor intensities of the primary ("allowed" $\Delta M_{I}=0$) transitions are affected substantially by these interactions. Only the electronic Zeeman

[^0]: p 145.
 (46) F. Hajdu, Acta Crystallogr., Sect. A, 27, 73 (1971); G. Palinkas, ibid., 29, 10 (1973).
 (47) F. Hajdu, Acta Crystallogr., Sect. A, 28, 250 (1972), and private communications.
 (48) R. M. Lawrence and R. F. Kruh, J. Chem. Phys., 41, 4758 (1967)
 (49) J. H. Konnert and J. Karle, Acta Crystallogr., Sect. A, 29, 702 (1973).
 (50) J. Waser and V. Schomaker, Rev. Mod. Phys., 25, 671 (1953).
 (51) D. L. Wertz and J. R. Bell, J. Inorg. Nucl. Chem., 35, 137, 861 (1973).
 (52) D. H. Templeton and C. H. Dauben, J. Am. Chem. Soc., 75, 6069 (1953).

